Secoisolariciresinol diglucoside is a blood-brain barrier protective and anti-inflammatory agent: Implications for neuroinflammation

37Citations
Citations of this article
55Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Secoisolariciresinol diglucoside (SDG), the main lignan in flaxseed, is known for its beneficial effects in inflammation, oxidative stress, heart disease, tumor progression, atherosclerosis, and diabetes. SDG might be an attractive natural compound that protects against neuroinflammation. Yet, there are no comprehensive studies to date investigating the effects of SDG on brain endothelium using relevant in vivo and in vitro models. Methods: We evaluated the effects of orally administered SDG on neuroinflammatory responses using in vivo imaging of the brain microvasculature during systemic inflammation and aseptic encephalitis. In parallel, the anti-inflammatory actions of SDG on brain endothelium and monocytes were evaluated in vitro blood-brain barrier (BBB) model. Multiple group comparisons were performed by one-way analysis of variance with Dunnet's post hoc tests. Results: We found that SDG diminished leukocyte adhesion to and migration across the BBB in vivo in the setting of aseptic encephalitis (intracerebral TNFα injection) and prevented enhanced BBB permeability during systemic inflammatory response (LPS injection). In vitro SDG pretreatment of primary human brain microvascular endothelial cells (BMVEC) or human monocytes diminished adhesion and migration of monocytes across brain endothelial monolayers in conditions mimicking CNS inflammatory responses. Consistent with our in vivo observations, SDG decreased expression of the adhesion molecule, VCAM1, induced by TNFα, or IL-1β in BMVEC. SDG diminished expression of the active form of VLA-4 integrin (promoting leukocyte adhesion and migration) and prevented the cytoskeleton changes in primary human monocytes activated by relevant inflammatory stimuli. Conclusion: This study indicates that SDG directly inhibits BBB interactions with inflammatory cells and reduces the inflammatory state of leukocytes. Though more work is needed to determine the mechanism by which SDG mediates these effects, the ability of SDG to exert a multi-functional response reducing oxidative stress, inflammation, and BBB permeability makes it an exciting potential therapeutic for neuroinflammatory diseases. SDG can serve as an anti-inflammatory and barrier-protective agent in neuroinflammation.

Cite

CITATION STYLE

APA

Rom, S., Zuluaga-Ramirez, V., Reichenbach, N. L., Erickson, M. A., Winfield, M., Gajghate, S., … Persidsky, Y. (2018). Secoisolariciresinol diglucoside is a blood-brain barrier protective and anti-inflammatory agent: Implications for neuroinflammation. Journal of Neuroinflammation, 15(1). https://doi.org/10.1186/s12974-018-1065-0

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free