Peroxisomal beta-oxidation system consists of four consecutive reactions to preferentially metabolize very long chain fatty acids. The first step of this system, catalyzed by acyl-CoA oxidase (AOX), converts fatty acyl-CoA to 2-trans-enoyl-CoA. Herein, we show that mice deficient in AOX exhibit steatohepatitis, increased hepatic H2O2 levels, and hepatocellular regeneration, leading to a complete reversal of fatty change by 6 to 8 months of age. The liver of AOX-/- mice with regenerated hepatocytes displays profound generalized spontaneous peroxisome proliferation and increased mRNA levels of genes that are regulated by peroxisome proliferator-activated receptor alpha (PPARalpha). Hepatic adenomas and carcinomas develop in AOX-/- mice by 15 months of age due to sustained activation of PPARalpha. These observations implicate acyl-CoA and other putative substrates for AOX, as biological ligands for PPARalpha; thus, a normal AOX gene is indispensable for the physiological regulation of PPARalpha.
CITATION STYLE
Fan, C.-Y., Pan, J., Usuda, N., Yeldandi, A. V., Rao, M. S., & Reddy, J. K. (1998). Steatohepatitis, Spontaneous Peroxisome Proliferation and Liver Tumors in Mice Lacking Peroxisomal Fatty Acyl-CoA Oxidase. Journal of Biological Chemistry, 273(25), 15639–15645. https://doi.org/10.1074/jbc.273.25.15639
Mendeley helps you to discover research relevant for your work.