Compressive sensing has gained momentum in recent years as an exciting new theory in signal processing with several useful applications. It states that signals known to have a sparse representation may be encoded and later reconstructed using a small number of measurements, approximately proportional to the signal's sparsity rather than its size. This paper addresses a critical problem that arises when scaling compressive sensing to signals of large length: that the time required for decoding becomes prohibitively long, and that decoding is not easily parallelized. We describe a method for partitioned compressive sensing, by which we divide a large signal into smaller blocks that may be decoded in parallel. However, since this process requires a significant increase in the number of measurements needed for exact signal reconstruction, we focus on mitigating artifacts that arise due to partitioning in approximately reconstructed signals. Given an error-prone partitioned decoding, we use large magnitude components that are detected with highest accuracy to influence the decoding of neighboring blocks, and call this approach neighbor-weighted decoding. We show that, for applications with a predefined error threshold, our method can be used in conjunction with partitioned compressive sensing to improve decoding speed, requiring fewer additional measurements than unweighted or locally-weighted decoding. © 2011 IEEE.
CITATION STYLE
Kung, H. T., & Tarsa, S. J. (2011). Partitioned compressive sensing with neighbor-weighted decoding. In Proceedings - IEEE Military Communications Conference MILCOM (pp. 149–156). https://doi.org/10.1109/MILCOM.2011.6127519
Mendeley helps you to discover research relevant for your work.