Long-Distance Q-Resolution with Dependency Schemes

16Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Resolution proof systems for quantified Boolean formulas (QBFs) provide a formal model for studying the limitations of state-of-the-art search-based QBF solvers that use these systems to generate proofs. We study a combination of two proof systems supported by the solver DepQBF: Q-resolution with generalized universal reduction according to a dependency scheme and long distance Q-resolution. We show that the resulting proof system—which we call long-distance Q(D)-resolution—is sound for the reflexive resolution-path dependency scheme. In fact, we prove that it admits strategy extraction in polynomial time. This comes as an application of a general result, by which we identify a whole class of dependency schemes for which long-distance Q(D)-resolution admits polynomial-time strategy extraction. As a special case, we obtain soundness and polynomial-time strategy extraction for long distance Q(D)-resolution with the standard dependency scheme. We further show that search-based QBF solvers using a dependency scheme D and learning with long-distance Q-resolution generate long-distance Q(D)-resolution proofs. The above soundness results thus translate to partial soundness results for such solvers: they declare an input QBF to be false only if it is indeed false. Finally, we report on experiments with a configuration of DepQBF that uses the standard dependency scheme and learning based on long-distance Q-resolution.

Cite

CITATION STYLE

APA

Peitl, T., Slivovsky, F., & Szeider, S. (2019). Long-Distance Q-Resolution with Dependency Schemes. Journal of Automated Reasoning, 63(1), 127–155. https://doi.org/10.1007/s10817-018-9467-3

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free