The shocking properties of supersonic flows: Dependence of the thermal overstability on M, α, and Tc/T0

20Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

We present hydrodynamical calculations of radiative shocks with low Mach numbers and find that the well-known global overstability can occur if the temperature exponent (a) of the cooling is sufficiently negative. We find that the stability of radiative shocks increases with decreasing Mach number, with the result that M = 2 shocks require α ≲ -1.2 in order to be overstable. Such values occur within a limited temperature range of many cooling curves. We observe that Mach numbers of order 100 are needed before the strong shock limit of αcr ≈ 0.04 is reached, and we discover that the frequency of oscillation of the fundamental mode also has a strong Mach number dependence. We find that feedback between the cooling region and the cold dense layer (CDL) further downstream is a function of Mach number, with stronger feedback and oscillation of the boundary between the CDL and the cooling region occuring at lower Mach numbers. This feedback can be quantified in terms of the reflection coefficient of sound waves, and in those cases where the cooling layer completely disappears at the end of each oscillation cycle, the initial velocity of the waves driven into the upstream pre-shock flow and into the downstream CDL, and the velocity of the the boundary between the CDL and the cooling layer, can be understood in terms of the solution to the Riemann problem. An interesting finding is that the stability properties of low Mach number shocks can be dramatically altered if the shocked gas is able to cool to temperatures less than the pre-shock value (i.e. when χ < 1, where χ is the ratio of the temperature of the cold dense layer to the pre-shock temperature). In such circumstances, low Mach number shocks have values of αcr which are comparable to values obtained for higher Mach number shocks when χ = 1. For instance, αcr = -0.1 when M = 2 and χ = 0.1, comparable to that when M = 10 and χ = 1. Thus, it is probable that low Mach number astrophysical shocks will be overstable in a variety of situations. We also explore the effect of different assumptions for the initial hydrodynamic set up and the type of boundary condition imposed downstream, and find that the properties of low Mach number shocks are relatively insensitive to these issues. The results of this work are relevant to astrophysical shocks with low Mach numbers, such as supernova remnants (SNRs) immersed in a hot interstellar medium (e.g., within a starburst region), and shocks in molecular clouds, where time-dependent chemistry can lead to overstability. © ESO 2005.

Cite

CITATION STYLE

APA

Pittard, J. M., Dobson, M. S., Durisen, R. H., Dyson, J. E., Hartquist, T. W., & O’Brien, J. T. (2005). The shocking properties of supersonic flows: Dependence of the thermal overstability on M, α, and Tc/T0. Astronomy and Astrophysics, 438(1), 11–21. https://doi.org/10.1051/0004-6361:20042260

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free