Kesulitan untuk mengorganisir data kuesioner yang bersifat konvensional melatarbelakangi penelitian ini. Oleh karena itu dibuat sistem yang memudahkan pengelompokan data kuesioner secara otomatis yang lengkap dengan sentimen yang terkandung didalamnya. Dataset yang digunakan dalam penelitian ini adalah data kuesioner rumah sakit Muhammadiyah lamongan. Penelitian ini hanya menangani kuesioner yang berbentuk teks. Data dengan fisik kertas direkap kemudian diinput ke database lengkap dengan kategori unit kerja dan sentiment. Selanjutnya dataset tersebut di dilakukan pre-prosesing yang meliputi penanganan negasi case folding, tokenizing, filtering dan stemming. Sebagai data uji komentar dari kuesioner akan dilakukan pre-prosesing selanjutnya dihitung tingkat kemiripan document dengan menggunakan metode K- Nearest Neighbor dan Vector Space Model. Jumlah data yang ditangani mempengaruhi performa system terutama dari akurasi dan kecepatan pada saat proses klasifikasi. Hasil dari sistem yang dibuat berupa ranking dokumen yang paling mirip dengan dataset berdasarkan urutan nilai cosine similarity. Ujicoba klasifikasi berdasarkan kelas kategori menghasilkan nilai akurasi 91 %. Ujicoba berdasarkan Kelas Sentimen sebesar 94 %.dari kombinasi keduanya system berhasil mendapat akurasi sebesar 86 %
CITATION STYLE
Mustain, M. M. (2021). ASPECT BASED SENTIMENT ANALYSIS DATA KUESIONER DI RUMAH SAKIT MUHAMMADIYAH LAMONGAN MENGGUNAKAN ALGORITMA K-NN. Joutica, 6(2), 506. https://doi.org/10.30736/jti.v6i2.677
Mendeley helps you to discover research relevant for your work.