Engineering glucose metabolism of escherichia coli under nitrogen starvation

33Citations
Citations of this article
115Readers
Mendeley users who have this article in their library.

Abstract

A major aspect of microbial metabolic engineering is the development of chassis hosts that have favorable global metabolic phenotypes, and can be further engineered to produce a variety of compounds. In this work, we focus on the problem of decoupling growth and production in the model bacterium Escherichia coli, and in particular on the maintenance of active metabolism during nitrogen-limited stationary phase. We find that by overexpressing the enzyme PtsI, a component of the glucose uptake system that is inhibited by α-ketoglutarate during nitrogen limitation, we are able to achieve a fourfold increase in metabolic rates. Alternative systems were also tested: chimeric PtsI proteins hypothesized to be insensitive to α-ketoglutarate did not improve metabolic rates under the conditions tested, whereas systems based on the galactose permease GalP suffered from energy stress and extreme sensitivity to expression level. Overexpression of PtsI is likely to be a useful arrow in the metabolic engineer’s quiver as productivity of engineered pathways becomes limited by central metabolic rates during stationary phase production processes.

Cite

CITATION STYLE

APA

Chubukov, V., Desmarais, J. J., Wang, G., Chan, L. J. G., Baidoo, E. E. K., Petzold, C. J., … Mukhopadhyay, A. (2017). Engineering glucose metabolism of escherichia coli under nitrogen starvation. Npj Systems Biology and Applications, 3. https://doi.org/10.1038/npjsba.2016.35

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free