AdS2holographic dictionary

133Citations
Citations of this article
29Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We construct the holographic dictionary for both running and constant dilaton solutions of the two dimensional Einstein-Maxwell-Dilaton theory that is obtained by a circle reduction from Einstein-Hilbert gravity with negative cosmological constant in three dimensions. This specific model ensures that the dual theory has a well defined ultraviolet completion in terms of a two dimensional conformal field theory, but our results apply qualitatively to a wider class of two dimensional dilaton gravity theories. For each type of solutions we perform holographic renormalization, compute the exact renormalized one-point functions in the presence of arbitrary sources, and derive the asymptotic symmetries and the corresponding conserved charges. In both cases we find that the scalar operator dual to the dilaton plays a crucial role in the description of the dynamics. Its source gives rise to a matter conformal anomaly for the running dilaton solutions, while its expectation value is the only non trivial observable for constant dilaton solutions. The role of this operator has been largely overlooked in the literature. We further show that the only non trivial conserved charges for running dilaton solutions are the mass and the electric charge, while for constant dilaton solutions only the electric charge is non zero. However, by uplifting the solutions to three dimensions we show that constant dilaton solutions can support non trivial extended symmetry algebras, including the one found by Compère, Song and Strominger [1], in agreement with the results of Castro and Song [2]. Finally, we demonstrate that any solution of this specific dilaton gravity model can be uplifted to a family of asymptotically AdS2 × S2 or conformally AdS2 × S2 solutions of the STU model in four dimensions, including non extremal black holes. The four dimensional solutions obtained by uplifting the running dilaton solutions coincide with the so called ‘subtracted geometries’, while those obtained from the uplift of the constant dilaton ones are new.

Cite

CITATION STYLE

APA

Cvetič, M., & Papadimitriou, I. (2016). AdS2holographic dictionary. Journal of High Energy Physics, 2016(12). https://doi.org/10.1007/JHEP12(2016)008

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free