Wall teichoic acid (WTA) or related polyanionic cell wall glycopolymers are produced by most Gram-positive bacterial species and have been implicated in various cellular functions. WTA and the proton gradient across bacterial membranes are known to control the activity of autolysins but the molecular details of these interactions are poorly understood. We demonstrate that WTA contributes substantially to the proton-binding capacity of Staphylococcus aureus cell walls and controls autolysis largely via the major autolysin AtlA whose activity is known to decline at acidic pH values. Compounds that increase or decrease the activity of the respiratory chain, a main source of protons in the cell wall, modulated autolysis rates in WTA-producing cells but did not affect the augmented autolytic activity observed in a WTA-deficient mutant. We propose that WTA represents a cation-exchanger like mesh in the Gram-positive cell envelopes that is required for creating a locally acidified milieu to govern the pH-dependent activity of autolysins. © 2012 Biswas et al.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Biswas, R., Martinez, R. E., Göhring, N., Schlag, M., Josten, M., Xia, G., … Peschel, A. (2012). Proton-binding capacity of staphylococcus aureus wall teichoic acid and its role in controlling autolysin activity. PLoS ONE, 7(7). https://doi.org/10.1371/journal.pone.0041415