The number of vertebrae in snakes is highly variable both within and among species. Across ophidian taxa, the number of vertebrae has been linked to many aspects of ecology and performance. Herein, I test the hypothesis that variation in the number of vertebrae and the length of the anterior region of sea snakes are associated with foraging ecology. I predicted that sea snakes that invade burrows and crevices for prey would have relatively longer anterior regions as a result of a greater number of vertebrae. Using radiographs, I counted the number of vertebrae between the head and atria and between the atria and cloaca for 22 species of hydrophiine sea snakes. The length between the cranium and atria was positively associated with the frequency of burrowing prey consumed. The number of vertebrae in the pre-atrial region showed a positive association with diet, although the analysis only approached statistical significance. No association was observed between diet and the number of vertebrae between the atria and cloaca, indicating that heart position is constrained with respect to the cloaca. These data indicate that sea snakes specializing on burrowing prey have adapted elongated, anterior regions of the body through an increased number of vertebrae.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Hampton, P. M. (2019). Foraging ecology influences the number of vertebrae in hydrophiine sea snakes. Biological Journal of the Linnean Society, 128(3), 645–650. https://doi.org/10.1093/biolinnean/blz115