The potential of magnetisation transfer NMR to monitor the dissolution process of cellulose in cold alkali

1Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Cellulose is the most important biopolymer on earth and, when derived from e.g. wood, a promising alternative to for example cotton, which exhibits a large environmental burden. The replacement depends, however, on an efficient dissolution process of cellulose. Cold aqueous alkali systems are attractive but these solvents have peculiarities, which might be overcome by understanding the acting mechanisms. Proposed dissolution mechanisms are for example the breakage of hydrophobic interactions and partly deprotonation of the cellulose hydroxyl groups. Here, we performed a mechanistic study using equimolar aqueous solutions of LiOH, NaOH and KOH to elucidate the dissolution process of microcrystalline cellulose (MCC). The pH was the highest for KOH(aq) followed by NaOH(aq) and LiOH(aq). We used a combination of conventional and advanced solution-state NMR methods to monitor the dissolution process of MCC by solely increasing the temperature from − 10 to 5 °C. KOH(aq) dissolved roughly 25% of the maximum amount of MCC while NaOH(aq) and LiOH(aq) dissolved up to 70%. Water motions on nanoscale timescales present in non-frozen water, remained unaffected on the addition of MCC. Magnetisation transfer (MT) NMR experiments monitored the semi-rigid MCC as a function of temperature. Interestingly, although NaOH(aq) and LiOH(aq) were able to dissolve a similar amount at 5 °C, MT spectra revealed differences with increasing temperature, suggesting a difference in the swollen state of MCC in LiOH(aq) already at − 10 °C. Furthermore, MT NMR shows a great potential to study the water exchange dynamics with the swollen and semi-rigid MCC fraction in these systems, which might give valuable insights into the dissolution mechanism in cold alkali.

Cite

CITATION STYLE

APA

Gunnarsson, M., Hasani, M., & Bernin, D. (2019). The potential of magnetisation transfer NMR to monitor the dissolution process of cellulose in cold alkali. Cellulose, 26(18), 9403–9412. https://doi.org/10.1007/s10570-019-02728-y

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free