With the growing popularity of location-based social media applications, point-of-interest (POI) recommendation has become important in recent years. Several techniques, especially the collaborative filtering (CF), Markov chain (MC), and recurrent neural network (RNN) based methods, have been recently proposed for the POI recommendation service. However, CF-based methods and MC-based methods are ineffective to represent complicated interaction relations in the historical check-in sequences. Although recurrent neural networks (RNNs) and its variants have been successfully employed in POI recommendation, they depend on a hidden state of the entire past that cannot fully utilize parallel computation within a check-in sequence. To address these above limitations, we propose a spatiotemporal dilated convolutional generative network (ST-DCGN) for POI recommendation in this study. Firstly, inspired by the Google DeepMind' WaveNet model, we introduce a simple but very effective dilated convolutional generative network as a solution to POI recommendation, which can efficiently model the user's complicated short- and long-range check-in sequence by using a stack of dilated causal convolution layers and residual block structure. Then, we propose to acquire user's spatial preference by modeling continuous geographical distances, and to capture user's temporal preference by considering two types of time periodic patterns (i.e., hours in a day and days in a week). Moreover, we conducted an extensive performance evaluation using two large-scale real-world datasets, namely Foursquare and Instagram. Experimental results show that the proposed ST-DCGN model is well-suited for POI recommendation problems and can effectively learn dependencies in and between the check-in sequences. The proposed model attains state-of-the-art accuracy with less training time in the POI recommendation task.
CITATION STYLE
Liu, C., Liu, J., Xu, S., Wang, J., Liu, C., Chen, T., & Jiang, T. (2020). A spatiotemporal dilated convolutional generative network for point-of-interest recommendation. ISPRS International Journal of Geo-Information, 9(2). https://doi.org/10.3390/ijgi9020113
Mendeley helps you to discover research relevant for your work.