Large FHE Gates from tensored homomorphic accumulator

14Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The main bottleneck of all known Fully Homomorphic Encryption schemes lies in the bootstrapping procedure invented by Gentry (STOC’09). The cost of this procedure can be mitigated either using Homomorphic SIMD techniques, or by performing larger computation per bootstrapping procedure. In this work, we propose new techniques allowing to perform more operations per bootstrapping in FHEW-type schemes (EUROCRYPT’13). While maintaining the quasi-quadratic O~ (n2) complexity of the whole cycle, our new scheme allows to evaluate gates with Ω(log n) input bits, which constitutes a quasi-linear speed-up. Our scheme is also very well adapted to large threshold gates, natively admitting upto Ω(n) inputs. This could be helpful for homomorphic evaluation of neural networks. Our theoretical contribution is backed by a preliminary prototype implementation, which can perform 6-to-6 bit gates in less than 10s on a single core, as well as threshold gates over 63 input bits even faster.

Cite

CITATION STYLE

APA

Bonnoron, G., Ducas, L., & Fillinger, M. (2018). Large FHE Gates from tensored homomorphic accumulator. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 10831 LNCS, pp. 217–251). Springer Verlag. https://doi.org/10.1007/978-3-319-89339-6_13

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free