Neurons in the medial superior olive (MSO) are thought to encode interaural time differences (ITDs), the main binaural cues used for localizing low-frequency sounds in the horizontal plane. The underlying mechanism is supposed to rely on a coincidence of excitatory inputs from the two ears that are phase-locked to either the stimulus frequency or the stimulus envelope. Extracellular recordings from MSO neurons in several mammals conform with this theory. However, there are two aspects that remain puzzling. The first concerns the role of the MSO in small mammals that have relatively poor low-frequency hearing and whose heads generate only very small ITDs. The second puzzling aspect of the scenario concerns the role of the prominent binaural inhibitory inputs to MSO neurons. We examined these two unresolved issues by recording from MSO cells in the Mexican free-tailed bat. Using sinusoidally amplitude-modulated tones, we found that the ITD sensitivities of many MSO cells in the bat were remarkably similar to those reported for larger mammals. Our data also indicate an important role for inhibition in sharpening ITD sensitivity and increasing the dynamic range of ITD functions. A simple model of ITD coding based on the timing of multiple inputs is proposed. Additionally, our data suggest that ITD coding is a by- product of a neuronal circuit that processes the temporal structure of sounds. Because of the free-tailed bat's small head size, ITD coding is most likely not the major function of the MSO in this small mammal and probably other small mammals.
CITATION STYLE
Grothe, B., & Park, T. J. (1998). Sensitivity to interaural time differences in the medial superior olive of a small mammal, the mexican free-tailed bat. Journal of Neuroscience, 18(16), 6608–6622. https://doi.org/10.1523/jneurosci.18-16-06608.1998
Mendeley helps you to discover research relevant for your work.