Liar's domination

37Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Assume that each vertex of a graph G is the possible location for an "intruder" such as a thief, or a saboteur, a fire in a facility or some possible processor fault in a computer network. A device at a vertex v is assumed to be able to detect the intruder at any vertex in its closed neighborhood N[v] and to identify at which vertex in N[v] the intruder is located. One must then have a dominating set S ⊆ V(G), a set with U vεSN[v] = V(G), to be able to identify any intruder's location. If any one device can fail to detect the intruder, then one needs a double-dominating set. This article introduces the study of liar's dominating sets, sets that can identify an intruder's location even when any one device in the neighborhood of the intruder vertex can lie, that is, any one device in the neighborhood of the intruder vertex can misidentify any vertex in its closed neighborhood as the intruder location. Liar's dominating sets lie between double-dominating sets and triple-dominating sets because every triple-dominating set is a liar's dominating set, and every liar's dominating setmust double dominate. © 2009 Wiley Periodicals, Inc.

Cite

CITATION STYLE

APA

Slater, P. J. (2009). Liar’s domination. Networks, 54(2), 70–74. https://doi.org/10.1002/net.20295

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free