The acylation of alcohols catalyzed by N,N-dimethylamino pyridine (DMAP) is, despite its widespread use, sometimes confronted with substrate-specific problems: For example, target compounds with multiple hydroxy groups may show insufficient selectivity for one hydroxyl, and the resulting product mixtures are hardly separable. Here we describe a concept that aims at tailor-made catalysts for the site-specific acylation. To this end, we introduce a catalyst library where each entry is constructed by connecting a variable and readily tuned peptide scaffold with a catalytically active unit based on DMAP. For selected examples, we demonstrate how library screening leads to the identification of optimized catalysts, and the substrates of interest can be converted with a markedly enhanced site-selectivity compared with only DMAP. Furthermore, substrate-optimized catalysts of this type can be used to selectively convert "their" substrate in the presence of structurally similar compounds, an important requisite for reactions with mixtures of substances. Substrate-optimized catalysts: Site- selective acylations were achieved using substrate-optimized catalysts (see scheme) as identified from a library screening. The catalysts are composed of low-molecular-weight peptides that are readily tuned through variation of the amino acid sequence, and one amino acid was connected to DMAP to ensure catalytic activity. These substrate-optimized catalysts were also applied to selectively convert one substrate in the presence of a structurally similar compound.
CITATION STYLE
Huber, F., & Kirsch, S. F. (2016). Site-Selective Acylations with Tailor-Made Catalysts. Chemistry - A European Journal, 22(17), 5914–5918. https://doi.org/10.1002/chem.201600790
Mendeley helps you to discover research relevant for your work.