In this work, the pyrolysis behavior of plastic waste—TV plastic shell—was investigated, based on thermogravimetric analysis and using a combination of model-fitting and model-free methods. The possible reaction mechanism and kinetic compensation effects were also examined. Thermogravimetric analysis indicated that the decomposition of plastic waste in a helium atmosphere can be divided into three stages: the minor loss stage (20–300°C), the major loss stage (300–500°C) and the stable loss stage (500–1000°C). The corresponding weight loss at three different heating rates of 15, 25 and 35 K/min were determined to be 2.80–3.02%, 94.45–95.11% and 0.04–0.16%, respectively. The activation energy (Ea) and correlation coefficient (R2) profiles revealed that the kinetic parameters calculated using the Friedman and Kissinger–Akahira–Sunose method displayed a similar trend. The values from the Flynn–Wall–Ozawa and Starink methods were comparable, although the former gave higher R2 values. The Eα values gradually decreased from 269.75 kJ/mol to 184.18 kJ/mol as the degree of conversion (α) increased from 0.1 to 0.8. Beyond this range, the Eα slightly increased to 211.31 kJ/mol. The model-fitting method of Coats–Redfern was used to predict the possible reaction mechanism, for which the first-order model resulted in higher R2 values than and comparable Eα values to those obtained from the Flynn–Wall–Ozawa method. The pre-exponential factors (lnA) were calculated based on the F1 reaction model and the Flynn–Wall–Ozawa method, and fell in the range 59.34–48.05. The study of the kinetic compensation effect confirmed that a compensation effect existed between Ea and lnA during the plastic waste pyrolysis.
CITATION STYLE
Yao, Z., Yu, S., Su, W., Wu, W., Tang, J., & Qi, W. (2020). Kinetic studies on the pyrolysis of plastic waste using a combination of model-fitting and model-free methods. Waste Management and Research, 38(1_suppl), 77–85. https://doi.org/10.1177/0734242X19897814
Mendeley helps you to discover research relevant for your work.