Degradation mechanism of methyl orange (MO), a typical azo dye, with pyrite (FeS2) activated persulfate (PS) was explored. The results showed that when the initial concentration of MO was 0.1 mM, FeS2 was 1.6 g/L and PS was 1.0 mM, the removal rate of MO could reach 92.9% in 150 min, and the removal rate of total organic carbon could reach 14.1%. In addition, both pH ≤ 2 and pH ≥ 10 could have an inhibitory effect in the FeS2/PS system. Furthermore, Cl- and low concentrations of HCO-3 had little effect on the degradation of MO with FeS2/PS. However, H2PO-4 and high concentrations of HCO-3 could inhibit the degradation of MO in the system. Besides, MO in river water and tap water were not degraded in FeS2/PS system, but acidification (pH = 4) would greatly promote the degradation. In addition, the removal rate of MO with FeS2/PS could still reach about 90% after five cycles of FeS2. Furthermore, the intermediates and possible degradation pathways were speculated by LC-MS, and the degradation mechanism of MO by FeS2/PS was that the cycle of Fe(III)/Fe(II) could continuously activate persulfate to produce SO·-4. The results could provide technical support for azo dye degradation in the FeS2/PS system.
CITATION STYLE
Liu, H., Liu, F., Zhang, J., Zhou, J., Bi, W., Qin, J., … Yang, C. (2022). Degradation of methyl orange by pyrite activated persulfate oxidation: mechanism, pathway and influences of water substrates. Water Science and Technology, 85(10), 2912–2927. https://doi.org/10.2166/wst.2022.134
Mendeley helps you to discover research relevant for your work.