UV Light Causes Structural Changes in Microplastics Exposed in Bio-Solids

6Citations
Citations of this article
35Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Bio-solids (biological sludge) from wastewater treatment plants are a significant source of the emission of microplastics (MPs) into the environment. Weakening the structure of MPs before they enter the environment may accelerate their degradation and reduce the environmental exposure time. Therefore, we studied the effect of UV-A and UV-C, applied at 70 °C, on three types of MPs, polypropylene (PP), polyethylene (PE), and polyethylene terephthalate (PET), that are commonly found in sewage sludge, using three shapes (fibers, lines, granules). The MPs were exposed to UV radiation in bio-solid suspensions, and to air and water as control. The structural changes in and degradation of the MPs were investigated using Attenuated Total Reflectance–Fourier Transform Infrared Spectrometry (ATR-FTIR) and surface morphology was performed with SEM analysis. UV exposure led to the emergence of carbonyl and hydroxyl groups in all of the PP samples. In PE and PET, these groups were formed only in the bio-solid suspensions. The presence of carbonyl and hydroxyl groups increased with an increasing exposure time. Overall, UV radiation had the greatest impact on the MPs in the bio-solids suspension. Due to the surface-to-volume ratio of the tested samples, which influences the degradation rate, the fibers were more degraded than the other two plastic shapes. UV-A was slightly more effective at degrading the MPs than UV-C. These findings show that ultraviolet radiation in combination with an elevated temperature affects the structure of polymers in wastewater bio-solids, which can accelerate their degradation.

Cite

CITATION STYLE

APA

Alavian Petroody, S. S., Hashemi, S. H., Škrlep, L., Mušič, B., van Gestel, C. A. M., & Sever Škapin, A. (2023). UV Light Causes Structural Changes in Microplastics Exposed in Bio-Solids. Polymers, 15(21). https://doi.org/10.3390/polym15214322

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free