Computational Modeling of the Interaction of Silver Nanoparticles with the Lipid Layer of the Skin

11Citations
Citations of this article
51Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Silver nanoparticles are recognized for numerous physical, biological, and pharmaceutical applications. Their main uses in the medical field comprise diagnostic and therapeutic applications. In this project, the interaction between silver nanoparticles and the lipid layer of the skin was studied in order to know how nanoparticles behave when they are in contact with the skin. Energies of the silver nanoparticles were calculated through the optimization of silver clusters using density functional theory implemented in the Gaussian program 09W. Biological molecules such as glucose, stearic acid, palmitic acid, and quercetin present in coated nanoparticles and in the skin were also optimized. The silver clusters containing 6 atoms were proven to be the most stable complexes. Moreover, a study of molecular orbital describing HOMO interactions of the clusters was performed showing that the electronic density was around the silver cluster. Molecular dynamics simulation was performed using Abalone program. Silver nanoparticles seemed to have very good clearance properties in our molecular dynamics simulation because over a certain period of time, the silver cluster got far away from the biological molecules.

Cite

CITATION STYLE

APA

Fabara, A., Cuesta, S., Pilaquinga, F., & Meneses, L. (2018). Computational Modeling of the Interaction of Silver Nanoparticles with the Lipid Layer of the Skin. Journal of Nanotechnology, 2018. https://doi.org/10.1155/2018/4927017

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free