Influence of Topographic Shading on the Mass Balance of the High Mountain Asia Glaciers

7Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

Abstract

Most studies attribute the glacier mass balance within High Mountain Asia (HMA) to climate change, ignoring the influence of its complex terrain. Knowledge of the influence of this complex terrain is crucial for understanding the spatial variability in its mass balance. However, there is a lack of any systematic assessment of this influence across HMA. Therefore, in this study, we used the glacier outlines and raster data (SRTM DEM, slope and aspect) to calculate the topographic shading of all 97,965 glaciers within HMA during the ablation period, which is regarded as a major index of the influence of complex terrain on the mass balance. The results showed that 27.19% of HMA glacier area was subjected to topographic shading, and regional differences were significant with respect to both their altitudinal and spatial distributions. The topographic shading contributed to the protection of the smallest glaciers from solar illumination. Furthermore, we found a significant correlation between the topographic shading and mass balance in these small north-facing glaciers. However, these small glaciers were most prevalent in the north-facing orientation, especially in West Kunlun, East Kunlun, Inner Tibet Plateau and Qilian Shan, where shading was found to increase with decreases in the glacier area. This indicates that complex terrain can affect the spatial distribution of the mass balance by altering the solar illumination pattern.

Cite

CITATION STYLE

APA

Wang, R., Ding, Y., Shangguan, D., Guo, W., Zhao, Q., Li, Y., & Song, M. (2022). Influence of Topographic Shading on the Mass Balance of the High Mountain Asia Glaciers. Remote Sensing, 14(7). https://doi.org/10.3390/rs14071576

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free