Bradykinin and kallidin are endogenous kinin peptide hormones that belong to the kallikrein–kinin system and are essential to the regulation of blood pressure, inflammation, coagulation and pain control. Des-Arg10-kallidin, the carboxy-terminal des-Arg metabolite of kallidin, and bradykinin selectively activate two G protein-coupled receptors, type 1 and type 2 bradykinin receptors (B1R and B2R), respectively. The hyperactivation of bradykinin receptors, termed ‘bradykinin storm’, is associated with pulmonary edema in COVID-19 patients, suggesting that bradykinin receptors are important targets for COVID-19 intervention. Here we report two G protein-coupled complex structures of human B1R and B2R bound to des-Arg10-kallidin and bradykinin, respectively. Combined with functional analysis, our structures reveal the mechanism of ligand selectivity and specific activation of the bradykinin receptor. These findings also provide a framework for guiding drug design targeting bradykinin receptors for the treatment of inflammation, cardiovascular disorders and COVID-19.
CITATION STYLE
Yin, Y. L., Ye, C., Zhou, F., Wang, J., Yang, D., Yin, W., … Jiang, Y. (2021). Molecular basis for kinin selectivity and activation of the human bradykinin receptors. Nature Structural and Molecular Biology, 28(9), 755–761. https://doi.org/10.1038/s41594-021-00645-y
Mendeley helps you to discover research relevant for your work.