Models for the structure of protoplanetary disks have so far been based on the assumption that the gas and the dust temperature are equal. The gas temperature, an essential ingredient in the equations of hydrostatic equilibrium of the disk, is then determined from a continuum radiative transfer calculation, in which the continuum opacity is provided by the dust. It has been long debated whether this assumption still holds in the surface layers of the disk, where the dust infrared emission features are produced. In this paper we compute the temperature of the gas in the surface layers of the disk in a self-consistent manner. The gas temperature is determined from a heating-cooling balance equation in which processes such as photoelectric heating, dissociative heating, dust-gas thermal heat exchange and line cooling are included. The abundances of the dominant cooling species such as CO, C, C+ and O are determined from a chemical network based on the atomic species H, He, C, O, S, Mg, Si, Fe (Kamp & Bertoldi 2000). The underlying disk models to our calculations are the models of Dullemond, van Zadelhoff & Natta (2002). We find that in general the dust and gas temperature are equal to withing 10% for AV 0.1, which is above the location of the `super-heated surface layer' in which the dust emission features are produced (e.g. Chiang & Goldreich 1997). High above the disk surface the gas temperature exceeds the dust temperature and can can become - in the presence of polycyclic aromatic hydrocarbons - as high as 600 K at a radius of 100 AU. This is a region where CO has fully dissociated, but a significant fraction of hydrogen is still in molecular form. The densities are still high enough for non-negligible H2 emission to be produced.....(see paper for full abstract)
CITATION STYLE
Kamp, I., & Dullemond, C. P. (2004). The Gas Temperature in the Surface Layers of Protoplanetary Disks. The Astrophysical Journal, 615(2), 991–999. https://doi.org/10.1086/424703
Mendeley helps you to discover research relevant for your work.