Enhancing auxin accumulation in maize root tips improves root growth and dwarfs plant height

103Citations
Citations of this article
101Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Summary: Maize is a globally important food, feed crop and raw material for the food and energy industry. Plant architecture optimization plays important roles in maize yield improvement. PIN-FORMED (PIN) proteins are important for regulating auxin spatiotemporal asymmetric distribution in multiple plant developmental processes. In this study, ZmPIN1a overexpression in maize increased the number of lateral roots and inhibited their elongation, forming a developed root system with longer seminal roots and denser lateral roots. ZmPIN1a overexpression reduced plant height, internode length and ear height. This modification of the maize phenotype increased the yield under high-density cultivation conditions, and the developed root system improved plant resistance to drought, lodging and a low-phosphate environment. IAA concentration, transport capacity determination and application of external IAA indicated that ZmPIN1a overexpression led to increased IAA transport from shoot to root. The increase in auxin in the root enabled the plant to allocate more carbohydrates to the roots, enhanced the growth of the root and improved plant resistance to environmental stress. These findings demonstrate that maize plant architecture can be improved by root breeding to create an ideal phenotype for further yield increases.

Cite

CITATION STYLE

APA

Li, Z., Zhang, X., Zhao, Y., Li, Y., Zhang, G., Peng, Z., & Zhang, J. (2018). Enhancing auxin accumulation in maize root tips improves root growth and dwarfs plant height. Plant Biotechnology Journal, 16(1), 86–99. https://doi.org/10.1111/pbi.12751

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free