On some factors determining the pressure drop across tracheal tubes during high-frequency percussive ventilation: a flow-independent model

1Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

To provide an in vitro estimation of the pressure drop across tracheal tubes (ΔPTT) in the face of given pulsatile frequencies and peak pressures (Pwork) delivered by a high-frequency percussive ventilator (HFPV) applied to a lung model. Tracheal tubes (TT) 6.5, 7.5 and 8.0 were connected to a test lung simulating the respiratory system resistive (R = 5, 20, 50 cmH2O/L/s) and elastic (C = 10, 20, and 50 mL/cmH2O) loads. The model was ventilated by HFPV with a pulse inspiratory peak pressure (work pressure Pwork) augmented in 5-cmH2O steps from 20 to 45 cmH2O, yielding 6 diverse airflows. The percussive frequency (f) was set to 300, 500 and 700 cycles/min, respectively. Pressure (Paw and Ptr) and flow (V’) measurements were performed for all 162 possible combinations of loads, frequencies, and work pressures for each TT size, thus yielding 486 determinations. For each respiratory cycle ΔPTT was calculated by subtracting each peak Ptr from its corresponding peak Paw. A non-linear model was constructed to assess the relationships between single parameters. Performance of the produced model was measured in terms of root mean square error (RMSE) and the coefficient of determination (r2). ΔPTT was predicted by Pwork (exponential Gaussian relationship), resistance (quadratic and linear terms), frequency (quadratic and linear terms) and tube diameter (linear term), but not by compliance. RMSE of the model on the testing dataset was 1.17 cmH2O, r2 was 0.79 and estimation error was lower than 1 cmH2O in 68% of cases. As a result, even without a flow value, the physician would be able to evaluate ΔPTT pressure. If the present results of our bench study could be clinically confirmed, the use of a nonconventional ventilatory strategy as HFPV, would be safer and easier.

Cite

CITATION STYLE

APA

Lucangelo, U., Ajčević, M., Lena, E., Ferluga, M., Comuzzi, L., Accardo, A., & Zin, W. A. (2021). On some factors determining the pressure drop across tracheal tubes during high-frequency percussive ventilation: a flow-independent model. Journal of Clinical Monitoring and Computing, 35(4), 885–890. https://doi.org/10.1007/s10877-020-00548-1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free