Coexistence of group I and group II chaperonins in the archaeon Methanosarcina mazei

54Citations
Citations of this article
75Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Two distantly related classes of cylindrical chaperonin complexes assist in the folding of newly synthesized and stress-denatured proteins in an ATP-dependent manner. Group I chaperonins are thought to be restricted to the cytosol of bacteria and to mitochondria and chloroplasts, whereas the group II chaperonins are found in the archaeal and eukaryotic cytosol. Here we show that members of the archaeal genus Methanosarcina co-express both the complete group I (GroEL/GroES) and group II (thermosome/prefoldin) chaperonin systems in their cytosol. These mesophilic archaea have acquired between 20 and 35% of their genes by lateral gene transfer from bacteria. In Methanosarcina mazei Gö1, both chaperonins are similarly abundant and are moderately induced under heat stress. The M. mazei GroEL/GroES proteins have the structural features of their bacterial counterparts. The thermosome contains three paralogous subunits, α, β, and γ, which assemble preferentially at a molar ratio of 2:1:1. As shown in vitro, the assembly reaction is dependent on ATP/Mg 2+ or ADP/Mg2+ and the regulatory role of the β subunit. The co-existence of both chaperonin systems in the same cellular compartment suggests the Methanosarcina species as useful model systems in studying the differential substrate specificity of the group I and II chaperonins and in elucidating how newly synthesized proteins are sorted from the ribosome to the proper chaperonin for folding.

Cite

CITATION STYLE

APA

Klunker, D., Haas, B., Hirtreiter, A., Figueiredo, L., Naylor, D. J., Pfeifer, G., … Hayer-Hartl, M. (2003). Coexistence of group I and group II chaperonins in the archaeon Methanosarcina mazei. Journal of Biological Chemistry, 278(35), 33256–33267. https://doi.org/10.1074/jbc.M302018200

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free