GaN nanorods, essentially free from crystal defects and exhibiting very sharp band-edge luminescence, have been grown by reactive direct-current magnetron sputter epitaxy onto Si (111) substrates at a low working pressure of 5 mTorr. Upon diluting the reactive N2 working gas with a small amount of Ar (0.5 mTorr), we observed an increase in the nanorod aspect ratio from 8 to ~35, a decrease in the average diameter from 74 to 35 nm, and a two-fold increase in nanorod density. With further dilution (Ar = 2.5 mTorr), the aspect ratio decreased to 14, while the diameter increased to 60 nm and the nanorod density increased to a maximum of 2.4 × 109 cm–2. Yet, lower N2 partial pressures eventually led to the growth of continuous GaN films. The observed morphological dependence on N2 partial pressure is explained by a change from N-rich to Ga-rich growth conditions, combined with reduced GaN-poisoning of the Ga-target as the N2 gas pressure is reduced. Nanorods grown at 2.5 mTorr N2 partial pressure exhibited a high intensity 4 K photoluminescence neutral donor bound exciton transitions (D0XA) peak at ~3.479 eV with a full-width-at-half-maximum of 1.7 meV. High-resolution transmission electron microscopy corroborated the excellent crystalline quality of the nanorods.
CITATION STYLE
Junaid, M., Hsiao, C. L., Chen, Y. T., Lu, J., Palisaitis, J., Persson, P. O. Å., … Birch, J. (2018). Effects of N2 partial pressure on growth, structure, and optical properties of GaN nanorods deposited by liquid-target reactive magnetron sputter epitaxy. Nanomaterials, 8(4). https://doi.org/10.3390/nano8040223
Mendeley helps you to discover research relevant for your work.