Initiation of ensemble data assimilation

42Citations
Citations of this article
25Readers
Mendeley users who have this article in their library.

Abstract

The specification of the initial ensemble for ensemble data assimilation is addressed. The presented work examines the impact of ensemble initiation in the Maximum Likelihood Ensemble Filter (MLEF) framework, but is also applicable to other ensemble data assimilation algorithms. Two methods are considered: the first is based on the use of the Kardar-Parisi-Zhang (KPZ) equation to form sparse random perturbations, followed by spatial smoothing to enforce desired correlation structure, while the second is based on the spatial smoothing of initially uncorrelated random perturbations. Data assimilation experiments are conducted using a global shallow-water model and simulated observations. The two proposed methods are compared to the commonly used method of uncorrelated random perturbations. The results indicate that the impact of the initial correlations in ensemble data assimilation is beneficial. The root-mean-square error rate of convergence of the data assimilation is improved, and the positive impact of initial correlations is notable throughout the data assimilation cycles. The sensitivity to the choice of the correlation length scale exists, although it is not very high. The implied computational savings and improvement of the results may be important in future realistic applications of ensemble data assimilation. Copyright © Blackwell Munksgaard, 2006.

Cite

CITATION STYLE

APA

Zupanski, M., Fletcher, S. J., Navon, I. M., Uzunoglu, B., Heikes, R. P., Randall, D. A., … Daescu, D. (2006). Initiation of ensemble data assimilation. Tellus, Series A: Dynamic Meteorology and Oceanography, 58(2), 159–170. https://doi.org/10.1111/j.1600-0870.2006.00173.x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free