Cross-domain recommendation without sharing user-relevant data

89Citations
Citations of this article
124Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Web systems that provide the same functionality usually share a certain amount of items. This makes it possible to combine data from different websites to improve recommendation quality, known as the cross-domain recommendation task. Despite many research efforts on this task, the main drawback is that they largely assume the data of different systems can be fully shared. Such an assumption is unrealistic - different systems are typically operated by different companies, and it may violate business privacy policy to directly share user behavior data since it is highly sensitive. In this work, we consider a more practical scenario to perform cross-domain recommendation. To avoid the leak of user privacy during the data sharing process, we consider sharing only the information of the item side, rather than user behavior data. Specifically, we transfer the item embeddings across domains, making it easier for two companies to reach a consensus (e.g., legal policy) on data sharing since the data to be shared is user-irrelevant and has no explicit semantics. To distill useful signals from transferred item embeddings, we rely on the strong representation power of neural networks and develop a new method named as NATR (short for Neural Attentive Transfer Recommendation). We perform extensive experiments on two real-world datasets, demonstrating that NATR achieves similar or even better performance than traditional cross-domain recommendation methods that directly share user-relevant data. Further insights are provided on the efficacy of NATR in using the transferred item embeddings to alleviate the data sparsity issue.

Cite

CITATION STYLE

APA

Gao, C., Zhao, K., Chen, X., He, X., Jin, D., Feng, F., & Li, Y. (2019). Cross-domain recommendation without sharing user-relevant data. In The Web Conference 2019 - Proceedings of the World Wide Web Conference, WWW 2019 (pp. 491–502). Association for Computing Machinery, Inc. https://doi.org/10.1145/3308558.3313538

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free