Excess type I IFNs (IFN-I) have been linked to the pathogenesis of systemic lupus erythematosus (SLE). Therapeutic use of IFN-I can trigger the onset of SLE and most lupus patients display up-regulation of a group of IFN-stimulated genes (ISGs). Although this “IFN signature” has been linked with disease activity, kidney involvement, and autoantibody production, the source of IFN-I production in SLE remains unclear. 2,6,10,14-Tetramethylpentadecane-induced lupus is at present the only model of SLE associated with excess IFN-I production and ISG expression. In this study, we demonstrate that tetramethylpentadecane treatment induces an accumulation of immature Ly6Chigh monocytes, which are a major source of IFN-I in this lupus model. Importantly, they were distinct from IFN-producing dendritic cells (DCs). The expression of IFN-I and ISGs was rapidly abolished by monocyte depletion whereas systemic ablation of DCs had little effect. In addition, there was a striking correlation between the numbers of Ly6Chigh monocytes and the production of lupus autoantibodies. Therefore, immature monocytes rather than DCs appear to be the primary source of IFN-I in this model of IFN-I-dependent lupus.
CITATION STYLE
Lee, P. Y., Weinstein, J. S., Nacionales, D. C., Scumpia, P. O., Li, Y., Butfiloski, E., … Reeves, W. H. (2008). A Novel Type I IFN-Producing Cell Subset in Murine Lupus. The Journal of Immunology, 180(7), 5101–5108. https://doi.org/10.4049/jimmunol.180.7.5101
Mendeley helps you to discover research relevant for your work.