Maintenance organization

16Citations
Citations of this article
139Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Organizing is the process of arranging resources (people, materials, technology etc.) together to achieve the organization's strategies and goals. The way in which the various parts of an organization are formally arranged is referred to as the organization structure. It is a system involving the interaction of inputs and outputs. It is characterized by task assignments, workflow, reporting relationships, and communication channels that link together the work of diverse individuals and groups. Any structure must allocate tasks through a division of labor and facilitate the coordination of the performance results. Nevertheless, we have to admit that there is no one best structure that meets the needs of all circumstances. Organization structures should be viewed as dynamic entities that continuously evolve to respond to changes in technology, processes and environment, (Daft, 1989 and Schermerhorn, 2007). Frederick W. Taylor introduced the concept of scientific management (time study and division of labor), while Frank and Lilian Gilbreth founded the concept of modern motion study techniques. The contributions of Taylor and the Gilbreths are considered as the basis for modern organization management Until the middle of the twentieth century maintenance has been carried out in an unplanned reactive way and for a long time it has lagged behind other areas of industrial management in the application of formal techniques and/or information technology. With realization of the impact of poor maintenance on enterprises' profitability, many managers are revising the organization of maintenance and have developed new approaches that foster effective maintenance organization. Maintenance cost can be a significant factor in an organization's profitability. In manufacturing, maintenance cost could consume 2-10% of the company's revenue and may reach up to 24% in the transport industry (Chelson, Payne and Reavill, 2005). So, contemporary management considers maintenance as an integral function in achieving productive operations and high-quality products, while maintaining satisfactory equipment and machines reliability as demanded by the era of automation, flexible manufacturing systems (FMS), "lean manufacturing", and "just-in-time" operations. However, there is no universally accepted methodology for designing maintenance systems, i.e., no fully structured approach leading to an optimal maintenance system (i.e., organizational structure with a defined hierarchy of authority and span of control; defined maintenance procedures and policies, etc.). Identical product organizations, but different in technology advancement and production size, may apply different maintenance systems and the different systems may run successfully. So, maintenance systems are designed using experience and judgment supported by a number of formal decision tools and techniques. Nevertheless, two vital considerations should be considered: strategy that decides on which level within the plant to perform maintenance, and hence outlining a structure that will support the maintenance; planning that handles dayto- day decisions on what maintenance tasks to perform and providing the resources to undertake these tasks. The maintenance organizing function can be viewed as one of the basic and integral parts of the maintenance management function (MMF). The MMF consists of planning, organizing, implementing and controlling maintenance activities. The management organizes, provides resources (personnel, capital, assets, material and hardware, etc.) and leads to performing tasks and accomplishing targets. Figure 1.1 shows the role organizing plays in the management process. Once the plans are created, the management's task is to ensure that they are carried out in an effective and efficient manner. Having a clear mission, strategy, and objectives facilitated by a corporate culture, organizing starts the process of implementation by clarifying job and working relations (chain of command, span of control, delegation of authority, etc.). In designing the maintenance organization there are important determinants that must be considered. The determinants include the capacity of maintenance, centralization vs decentralization and in-house maintenance vs outsourcing. A number of criteria can be used to design the maintenance organization. The criteria include clear roles and responsibilities, effective span of control, facilitation of good supervision and effective reporting, and minimization of costs. Maintenance managers must have the capabilities to create a division of labor for maintenance tasks to be performed and then coordinate results to achieve a common purpose. Solving performance problems and capitalizing on opportunities could be attained through selection of the right persons, with the appropriate capabilities, supported by continuous training and good incentive schemes, in order to achieve organization success in terms of performance effectiveness and efficiency. This chapter covers the organizational structure of maintenance activities. Section 1.2 describes the organization objectives and the responsibilities of maintenance, followed by the determinants of a maintenance organization in Section 1.3. Section 1.4 outlines the design of maintenance organization and Section 1.5 presents basic models for organization. The description of function of material and spare parts management is given in Section 1.6, and Section 1.7 outlines the process of establishing authority. The role of the quality of leadership and supervision is presented in Section 1.8 followed by the role of incentives in Section 1.9. Sections 1.10 and 1.11 present education and training, and management and labor relations, respectively. A summary of the chapter is provided in Section 1.12. © 2009 Springer-Verlag London.

Cite

CITATION STYLE

APA

Haroun, A. E., & Duffuaa, S. O. (2009). Maintenance organization. In Handbook of Maintenance Management and Engineering (pp. 3–15). Springer London. https://doi.org/10.1007/978-1-84882-472-0_1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free