We caught solitary foragers of the Australian Jack Jumper ant, Myrmecia croslandi, and released them in three compass directions at distances of 10 and 15 m from the nest at locations they have never been before. We recorded the head orientation and the movements of ants within a radius of 20 cm from the release point and, in some cases, tracked their subsequent paths with a differential GPS. We find that upon surfacing from their transport vials onto a release platform, most ants move into the home direction after looking around briefly. The ants use a systematic scanning procedure, consisting of saccadic head and body rotations that sweep gaze across the scene with an average angular velocity of 90° s-1 and intermittent changes in turning direction. By mapping the ants' gaze directions onto the local panorama, we find that neither the ants' gaze nor their decisions to change turning direction are clearly associated with salient or significant features in the scene. Instead, the ants look most frequently in the home direction and start walking fast when doing so. Displaced ants can thus identify home direction with little translation, but exclusively through rotational scanning. We discuss the navigational information content of the ants' habitat and how the insects' behaviour informs us about how they may acquire and retrieve that information. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
CITATION STYLE
Zeil, J., Narendra, A., & Stürzl, W. (2014). Looking and homing: How displaced ants decide where to go. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1636). https://doi.org/10.1098/rstb.2013.0034
Mendeley helps you to discover research relevant for your work.