Chain: tasks and channels for reliable intermittent programs

  • Colin A
  • Lucia B
N/ACitations
Citations of this article
19Readers
Mendeley users who have this article in their library.

Abstract

Energy harvesting computers enable general-purpose computing using energy collected from their environment. Energy-autonomy of such devices has great potential, but their intermittent power supply poses a challenge. Intermittent program execution compromises progress and leaves state inconsistent. This work describes Chain: a new model for programming intermittent devices.A Chain program is a set of programmer-defined tasks that compute and exchange data through channels. Chain guarantees forward progress at task granularity. A task is restartable and never sees inconsistent state, because its input and output channels are separated. Our system supports language features for expressing advanced data exchange patterns and for encapsulating reusable functionality.Chain fundamentally differs from state-of-the-art checkpointing approaches and does not incur the associated overhead. We implement Chain as C language extensions and a runtime library. We used Chain to implement four applications: machine learning, encryption, compression, and sensing. In experiments, Chain ensured consistency where prior approaches failed and improved throughput by 2-7x over the leading state-of-the-art system.

Cite

CITATION STYLE

APA

Colin, A., & Lucia, B. (2016). Chain: tasks and channels for reliable intermittent programs. ACM SIGPLAN Notices, 51(10), 514–530. https://doi.org/10.1145/3022671.2983995

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free