The paper investigates the cavitation erosion (CE) and sliding wear (SW) resistance of cold-sprayed Al/Al2O3 and Cu/Al2O3 composites and studies them in relation to a set of metallic materials such as aluminium alloy (AlCu4Mg1), pure copper (Cu110), brass (CuZn40Pb2) and stainless steel (AISI 304). The coatings were deposited on stainless steel by low-pressure cold spray (LPCS) using Al (40 wt.%) and Cu (50 wt.%) blended with Al2O3 (60 and 50 wt.%, respectively) feedstocks. CE resistance was estimated by the stationary sample method according to the ASTM G32 standard. The SW test was conducted using a ball-on-disc tester with compliance to the ASTM G99 standard. Results obtained for the LPCS coatings show that the Cu/Al2O3 coating exhibits a denser structure but lower adhesion and microhardness than Al/Al2O3. The Al/Al2O3 and Cu/Al2O3 resistance to cavitation is lower than for bulk alloys; however, composites present higher sliding wear resistance to that of AlCu4Mg1, CuZn40Pb2 and stainless steel. The CE wear mechanisms of LPCS composites start at the structural discontinuities and non-uniformities. The cavitation erosion degradation mechanism of Al/Al2O3 relies on chunk material detachment while that of Cu/Al2O3 initiates by alumina removal and continues as layer-like Cu-metallic material removal. CE damage of metal alloys relies on the fatigue-induced removal of deformed material. The SW mechanism of bulk alloys has a dominant adhesive mode. The addition of Al2O3 successfully reduces the material loss of LPCS composites but increases the friction coefficient. Coatings’ wear mechanism has an adhesive-abrasive mode. In both CE and SW environment, the behaviour of the cold-sprayed Cu/Al2O3 composite is much more promising than that of the Al/Al2O3.
CITATION STYLE
Szala, M., Łatka, L., Walczak, M., & Winnicki, M. (2020). Comparative study on the cavitation erosion and sliding wear of cold-sprayed al/al2o3 and cu/al2o3 coatings, and stainless steel, aluminium alloy, copper and brass. Metals, 10(7), 1–25. https://doi.org/10.3390/met10070856
Mendeley helps you to discover research relevant for your work.