Identification of drugs as single agents or in combination to prevent carcinoma dissemination in a microfluidic 3D environment

61Citations
Citations of this article
94Readers
Mendeley users who have this article in their library.

Abstract

Experiments were performed in a modified microfluidic platform recapitulating part of the in vivo tumor microenvironment by co-culturing carcinoma cell aggregates embedded in a three-dimensional (3D) collagen scaffold with human umbilical vein endothelial cells (HUVECs). HUVECs were seeded in one channel of the device to initiate vessel-like structures in vitro prior to introducing the aggregates. The lung adenocarcinoma cell line A549 and the bladder carcinoma cell line T24 were tested. Dose-response assays of four drugs known to interfere with Epithelial Mesenchymal Transition (EMT) signaling pathways were quantified using relative dispersion as a metric of EMT progression. The presence of HUVECs in one channel induces cell dispersal in A549 which then can be inhibited by each of the four drugs. Complete inhibition of T24 aggregate dispersal, however, is not achieved with any single agent, although partial inhibition was observed with 10 μM of the Src inhibitor, AZD-0530. Almost complete inhibition of T24 dispersal in monoculture was achieved only when the four drugs were added in combination, each at 10 μM concentration. Coculture of T24 with HUVECs forfeits the almost-complete inhibition. The enhanced dispersal observed in the presence of HUVECs is a consequence of secretion of growth factors, including HGF and FGF-2, by endothelial cells. This 3D microfluidic co-culture platform provides an in vivo-like surrogate for anti-invasive and anti-metastatic drug screening. It will be particularly useful for defining combination therapies for aggressive tumors such as invasive bladder carcinoma.

References Powered by Scopus

Hallmarks of cancer: The next generation

52064Citations
N/AReaders
Get full text

Epithelial-Mesenchymal Transitions in Development and Disease

8431Citations
N/AReaders
Get full text

Epithelial-mesenchymal transitions in tumor progression

5825Citations
N/AReaders
Get full text

Cited by Powered by Scopus

EMT: 2016

3597Citations
N/AReaders
Get full text

Modelling cancer in microfluidic human organs-on-chips

664Citations
N/AReaders
Get full text

Targeting epithelial-mesenchymal transition (EMT) to overcome drug resistance in cancer

635Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Bai, J., Tu, T. Y., Kim, C., Thiery, J. P., & Kamm, R. D. (2015). Identification of drugs as single agents or in combination to prevent carcinoma dissemination in a microfluidic 3D environment. Oncotarget, 6(34), 36603–36614. https://doi.org/10.18632/oncotarget.5464

Readers over time

‘15‘16‘17‘18‘19‘20‘21‘22‘23‘24‘2505101520

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 38

69%

Researcher 10

18%

Professor / Associate Prof. 5

9%

Lecturer / Post doc 2

4%

Readers' Discipline

Tooltip

Engineering 17

41%

Biochemistry, Genetics and Molecular Bi... 11

27%

Agricultural and Biological Sciences 10

24%

Pharmacology, Toxicology and Pharmaceut... 3

7%

Save time finding and organizing research with Mendeley

Sign up for free
0