Water-separated part of Chloranthus serratus alleviates lipopolysaccharide-induced RAW264.7 cell injury mainly by regulating the MAPK and Nrf2/HO-1 inflammatory pathways

14Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Chloranthus serratus (Chloranthaceae) has been used to treat bruises, rheumatoid and bone pain. However, the anti-inflammatory mechanisms of C. serratus in vitro have not been fully elucidated. The present study aimed to explore the anti-inflammatory activity and potential mechanisms of C. serratus's separated part of water (CSSPW) in lipopolysaccharide (LPS)-induced RAW264.7 cells. Methods: The concentrations of CSSPW were optimized by CCK-8 method. Nitric oxide (NO) content was detected by one-step method. The levels of inflammatory cytokines were determined by enzyme-linked immunosorbent assay (ELISA). Gene expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) was detected by real-Time quantitative PCR (qPCR). Immunofluorescence and DCFH-DA fluorescent probes were used to detect p65 nuclear translocation and reactive oxygen species (ROS) content, respectively. Western blotting was used to assay the protein expression of mitogen-Activated protein kinases (MAPK), nuclear factor-kappa B (NF-κB) and nuclear transcription factor E2 related factor 2/haem oxygenase-1 (Nrf2/HO-1) pathways. Results: The final concentrations of 15 ng/mL, 1.5 μg/mL and 150 μg/mL were selected as low, medium and high doses of CSSPW, respectively. CSSPW treatment significantly reduced the generation of NO, tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6), prostaglandinE2 (PGE2), iNOS mRNA and COX-2 mRNA in response to LPS stimulation. Furthermore, the protein expression of the MAPK and NF-κB pathways was suppressed by CSSPW treatment, as well as p65 nuclear translocation and ROS production. In contrast, the protein expression of the Nrf2/HO-1 pathway was markedly upregulated. Conclusions: CSSPW exerts its anti-inflammatory effect via downregulating the production of pro-inflammatory mediators, inhibiting the activation of NF-κB and MAPK pathways, as well as activating Nrf2/HO-1 pathway in LPS-induced RAW264.7 cells.

Cite

CITATION STYLE

APA

Sun, S., Du, Y., Yin, C., Suo, X., Wang, R., Xia, R., & Zhang, X. (2019). Water-separated part of Chloranthus serratus alleviates lipopolysaccharide-induced RAW264.7 cell injury mainly by regulating the MAPK and Nrf2/HO-1 inflammatory pathways. BMC Complementary and Alternative Medicine, 19(1). https://doi.org/10.1186/s12906-019-2755-6

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free