Background: The aim of this study was to develop a minimal invasive complete spinal cord injury (SCI) minipig model for future research applications. The minipig is considered a translationally relevant model for SCI research. However, a standardized minimal invasive complete SCI model for pigs has not yet been established. Methods: Adult Göttingen minipigs were anesthetized and placed in extended prone position. After initial computed tomography (CT) scan, the skin was incised, a needle placed in the epidural fatty tissue. Using the Seldinger technique, a guidewire and dilators were introduced to insert the balloon catheter to Th12. After confirmation of the level Th11/Th12, the balloon was inflated to 2 atm for 30 min. The severity of the lesion was followed by CT and by MRI, and by immunohistochemistry. Function was assessed at the motor and sensory level. Results: Duration of procedure was about 60 min including the 30-min compression time. The balloon pressure of 2 atm was maintained without losses. The lesion site was clearly discernible and no intradural bleeding was observed by CT. Neurological assessments during the 4-month follow-up time showed consistent, predictable, and stable neurological deficits. Magnetic resonance imaging analyses at 6 h and 4 weeks post SCI with final immunohistochemical analyses of spinal cord tissue underlined the neurological outcomes and proved SCI completeness. Conclusions: We have established a new, minimal invasive, highly standardized, CT-guided spinal cord injury procedure for minipigs. All risks of the open surgery can be excluded using this technique. This CT-guided SC compression is an excellent technique as it avoids long surgery and extensive trauma and allows a feasible inter-animal comparison.
CITATION STYLE
Foditsch, E. E., Miclaus, G., Patras, I., Hutu, I., Roider, K., Bauer, S., … Zimmermann, R. (2018). A new technique for minimal invasive complete spinal cord injury in minipigs. Acta Neurochirurgica, 160(3), 459–465. https://doi.org/10.1007/s00701-017-3442-3
Mendeley helps you to discover research relevant for your work.