Galaxy evolution depends strongly on the physics of the interstellar medium (ISM). Motivated by the need to incorporate the properties of the ISM in cosmological simulations, we construct a simple method to include the contribution of non-thermal components in the calculation of pressure of interstellar gas. In our method, we treat three non-thermal components - turbulence, magnetic fields and cosmic rays - and effectively parametrize their amplitude. We assume that the three components settle into a quasi-steady-state that is governed by the star formation rate, and calibrate their magnitude and density dependence by the observed radio-FIR correlation, relating synchrotron radiation to star formation rates of galaxies. We implement our model in single-cell numerical simulation of a parcel of gas with constant pressure boundary conditions and demonstrate its effect and potential. Then, the non-thermal pressure model is incorporated into RAMSES and hydrodynamic simulations of isolated galaxies with and without the non-thermal pressure model are presented and studied. Specifically, we demonstrate that the inclusion of realistic non-thermal pressure reduces the star formation rate by an order of magnitude and increases the gas depletion time by as much. We conclude that the non-thermal pressure can prolong the star formation epoch and achieve consistency with observations without invoking artificially strong stellar feedback.
CITATION STYLE
Birnboim, Y., Balberg, S., & Teyssier, R. (2015). Galaxy evolution: Modelling the role of non-thermal pressure in the interstellar medium. Monthly Notices of the Royal Astronomical Society, 447(4), 3678–3692. https://doi.org/10.1093/mnras/stu2717
Mendeley helps you to discover research relevant for your work.