Physical modelling of aluminum refining process conducted in batch reactor with rotary impeller

26Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

The refining process is one of the essential stages of aluminum production. Its main aim is to remove hydrogen, that causes porosity and weakens the mechanical and physical properties of casting aluminum. The process is mainly conducted by purging inert gas through the liquid metal, using rotary impellers. The geometry of the impellers and the processing parameters, such as flow rate of gas and rotary impeller speed, influence the gas dispersion level, and therefore the efficiency of the process. Improving the process, and optimization of parameters, can be done by physical modelling. In this paper, the research was carried out with the use of a water model of batch reactor, testing three different rotary impellers. Varied methods were used: visualization, which can help to evaluate the level of dispersion of gas bubbles in liquid metal; determination of residence time distribution (RTD) curves, which was obtained by measuring the conductivity of NaCl tracer in the fluid; and indirect studies, completed by measuring the content of dissolved oxygen in water to simulate hydrogen desorption. The research was carried out for different processing parameters, such as flow rate of refining gas (5–25 L·min-1) and rotary impeller speed (3.33–8.33 s-1). The obtained results were presented graphically and discussed in detail.

Cite

CITATION STYLE

APA

Saternus, M., & Merder, T. (2018). Physical modelling of aluminum refining process conducted in batch reactor with rotary impeller. Metals, 8(9). https://doi.org/10.3390/met8090726

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free