Develop a Smart Microclimate Control System for Greenhouses through System Dynamics and Machine Learning Techniques

4Citations
Citations of this article
74Readers
Mendeley users who have this article in their library.

Abstract

Agriculture is extremely vulnerable to climate change. Greenhouse farming is recognized as a promising measure against climate change. Nevertheless, greenhouse farming frequently encounters environmental adversity, especially greenhouses built to protect against typhoons. Short-term microclimate prediction is challenging because meteorological variables are strongly interconnected and change rapidly. Therefore, this study proposes a water-centric smart microclimate-control system (SMCS) that fuses system dynamics and machine-learning techniques in consideration of the internal hydro-meteorological process to regulate the greenhouse micro-environment within the canopy for environmental cooling with improved resource-use efficiency. SMCS was assessed by in situ data collected from a tomato greenhouse in Taiwan. The results demonstrate that the proposed SMCS could save 66.8% of water and energy (electricity) used for early spraying during the entire cultivation period compared to the traditional greenhouse-spraying system based mainly on operators’ experiences. The proposed SMCS suggests a practicability niche in machine-learning-enabled greenhouse automation with improved crop productivity and resource-use efficiency. This will increase agricultural resilience to hydro-climate uncertainty and promote resource preservation, which offers a pathway towards carbon-emission mitigation and a sustainable water–energy–food nexus.

Cite

CITATION STYLE

APA

Chen, T. H., Lee, M. H., Hsia, I. W., Hsu, C. H., Yao, M. H., & Chang, F. J. (2022). Develop a Smart Microclimate Control System for Greenhouses through System Dynamics and Machine Learning Techniques. Water (Switzerland), 14(23). https://doi.org/10.3390/w14233941

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free