Nonequilibrium phase transition in an atomistic glassformer: The connection to thermodynamics

49Citations
Citations of this article
80Readers
Mendeley users who have this article in their library.

Abstract

Tackling the low-temperature fate of supercooled liquids is challenging because of the immense time scales involved, which prevent equilibration and lead to the operational glass transition. Relating glassy behavior to an underlying, thermodynamic phase transition is a long-standing open question in condensed matter physics. Like experiments, computer simulations are limited by the small time window over which a liquid can be equilibrated. Here, we address the challenge of low-temperature equilibration using trajectory sampling in a system undergoing a nonequilibrium phase transition. This transition occurs in trajectory space between the normal supercooled liquid and a glassy state rich in low-energy geometric motifs. Our results indicate that this transition might become accessible in equilibrium configurational space at a temperature close to the so-called Kauzmann temperature, and they provide a possible route to unify dynamical and thermodynamical theories of the glass transition.

Cite

CITATION STYLE

APA

Turci, F., Royall, P. P., & Speck, T. (2017). Nonequilibrium phase transition in an atomistic glassformer: The connection to thermodynamics. Physical Review X, 7(3). https://doi.org/10.1103/PhysRevX.7.031028

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free