β2-Adrenergic receptor activation suppresses the rat phenethylamine hallucinogen-induced head twitch response: Hallucinogen-induced excitatory post-synaptic potentials as a potential substrate

2Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

Abstract

5-Hydroxytryptamine2A (5-HT2A) receptors are enriched in layers I and Va of the rat prefrontal cortex and neocortex and their activation increases the frequency of glutamatergic excitatory post-synaptic potentials/currents (EPSP/Cs) onto layer V pyramidal cells. A number of other G-protein coupled receptors (GPCRs) are also enriched in cortical layers I and Va and either induce (α1-adrenergic and orexin2) or suppress (metabotropic glutamate2 [mGlu2], adenosine A1, μ-opioid) both 5-HT-induced EPSCs and head twitches or head shakes induced by the phenethylamine hallucinogen 2,5-dimethoxy-4-iodoamphetamine (DOI). Another neurotransmitter receptor also localized to apparent thalamocortical afferents to layers I and Va of the rat prefrontal cortex and neocortex is the β2-adrenergic receptor. Therefore, we conducted preliminary electrophysiological experiments with rat brain slices examining the effects of epinephrine on electrically-evoked EPSPs following bath application of DOI (3 μM). Epinephrine (0.3-10 μM) suppressed the late EPSPs produced by electrical stimulation and DOI. The selective β2-adrenergic receptor antagonist ICI-118,551 (300 nM) resulted in a rightward shift of the epinephrine concentration-response relationship. We also tested the selective β2-adrenergic receptor agonist clenbuterol and the antagonist ICI-118,551 on DOI-induced head twitches. Clenbuterol (0.3-3 mg/kg, i.p.) suppressed DOI (1.25 mg/kg, i.p.)-induced head twitches. This clenbuterol effect appeared to be at least partially reversed by the selective β2-adrenergic receptor antagonist ICI-118,553 (0.01-1 mg/kg, i.p.), with significant reversal at doses of 0.1 and 1 mg/kg. Thus, β2-adrenergic receptor activation reverses the effects of phenethylamine hallucinogens in the rat prefrontal cortex. While Gi/Go-coupled GPCRs have previously been shown to suppress both the electrophysiological and behavioral effects of 5-HT2A receptor activation in the mPFC, the present work appears to extend this suppressant action to a Gs-coupled GPCR. Furthermore, the modulation of 5-HT2A receptor activation-induced glutamate release onto mPFC layer V pyramidal neurons apical dendrites by a range GPCRs in rat brain slices appears to results in behaviorally salient effects of relevance when screening for novel CNS therapeutic drugs.

Cite

CITATION STYLE

APA

Marek, G. J., & Ramos, B. P. (2018). β2-Adrenergic receptor activation suppresses the rat phenethylamine hallucinogen-induced head twitch response: Hallucinogen-induced excitatory post-synaptic potentials as a potential substrate. Frontiers in Pharmacology, 9(FEB). https://doi.org/10.3389/fphar.2018.00089

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free