The excellent performance and safety of direct formic acid fuel cells (DFAFCs) promote them as potential power sources for portable electronic devices. However, their real application is still highly challenging due to the poor power performance and high complexity in the fabrication of catalyst electrodes. In this work, we demonstrate a new gas diffusion electrode (GDE) with ultrathin PtCu alloy nanowire (NW) arrays in situ grown on the carbon paper gas diffusion layer surface. The growing process is achieved by a facile template- and surfactant-free self-growth assisted reduction method at room temperature. A finely controlled ion reduction process tunes the nucleation and crystal growth of Pt and Cu leading to the formation of alloy nanowires with an average diameter of about 4 nm. The GDE is directly used as the anode for DFAFCs. The results in the half-cell GDE measurement indicate that the introduction of Cu in PtCu NWs boosts the direct oxidation pathway for formic acid. The Pt3Cu1 NW GDE shows a 2.4-fold higher power density compared to the Pt NW GDE in the membrane electrode assembly test in single cells.
CITATION STYLE
Li, Y., Yan, Y., He, Y., & Du, S. (2022). Catalyst Electrodes with PtCu Nanowire Arrays In Situ Grown on Gas Diffusion Layers for Direct Formic Acid Fuel Cells. ACS Applied Materials and Interfaces, 14(9), 11457–11464. https://doi.org/10.1021/acsami.1c24010
Mendeley helps you to discover research relevant for your work.