Impact Comparison of Synoptic Meteorology and Nationwide/local Emissions on the Seoul Metropolitan Area during High PM Multi-event and Non-event Days

N/ACitations
Citations of this article
5Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Meteorology and emissions play very important roles in the concentra- tions of air pollutants during severe haze/smog periods. This study compares the impacts of synoptic meteorology and nationwide/local emissions during high PM10 multi-event and non-event days in the Seoul Metropolitan Area (SMA). The multi-event and non-event cases were selected based on daily mean PM10 concentrations in Seoul from January 2014 to March 2019. The multi-event cases in spring and winter were closely associated with weak synoptic winds, while that in autumn was due to the strong winds at the rear side of a strong cold front, which induced the Asian dust event in northeastern China and Korea. The multi-event case in spring was found to be mainly due to series of migratory anticyclones, while winter case was due to the stagnant system after northerly winds. The surrounding low pressure systems as well as high pressure systems could be important to determine whether the synoptic systems would be stagnant or not. The fractional contributions of SMA emissions to the mean PM10 and PM2.5 concentrations were 24%-35% and 22%-35% for the multi-event cases, respectively. The contributions to the maximum PM10 and PM2.5 concentrations were larger than those to the mean concentrations by 16%-23% and 19%-26% for the multi-event cases, respectively.

Cite

CITATION STYLE

APA

Park, I. S., Park, M. S., Jang, Y. W., Kim, H. K., Song, C. K., Owen, J. S., … Kim, C. H. (2020). Impact Comparison of Synoptic Meteorology and Nationwide/local Emissions on the Seoul Metropolitan Area during High PM Multi-event and Non-event Days. Asian Journal of Atmospheric Environment, 14(3), 263–279. https://doi.org/10.5572/ajae.2020.14.3.263

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free