In the present study, we used big data analysis to examine the key attributes related to stress and mental health among Korean Taekwondo student-athletes. Keywords included “Taekwondo + Student athlete + Stress + Mental health”. Naver and Google databases were searched to identify research published between 1 January 2010 and 31 December 2019. Text-mining analysis was performed on unstructured texts using TEXTOM 4.5, with social network analysis performed using UCINET 6. In total, 3149 large databases (1.346 MB) were analyzed. Two types of text-mining analyses were performed, namely, frequency analysis and term frequency-inverse document frequency analysis. For the social network analysis, the degree centrality and convergence of iterated correlation analysis were used to deduce the node-linking degree in the network and to identify clusters. The top 10 most frequently used terms were “stress,” “Taekwondo,” “health,” “player,” “student,” “mental,” “exercise,” “mental health,” “relieve,” and “child.” The top 10 most frequently occurring results of the TF-IDF analysis were “Taekwondo”, “health”, “player”, “exercise”, “student”, “mental”, “stress”, “mental health”, “child” and “relieve”. The degree centrality analysis yielded similar results regarding the top 10 terms. The convergence of iterated correlation analysis identified six clusters: student, start of dream, diet, physical and mental, sports activity, and adult Taekwondo center. Our results emphasize the importance of designing interventions that attenuate stress and improve mental health among Korean Taekwondo student-athletes.
CITATION STYLE
Park, S., Jeon, J., Ahn, H., Yang, Y., & So, W. (2022). Big Data Analysis of the Key Attributes Related to Stress and Mental Health in Korean Taekwondo Student Athletes. Sustainability (Switzerland), 14(1). https://doi.org/10.3390/su14010477
Mendeley helps you to discover research relevant for your work.