Mn-Doped BaTiO3Ceramics: Thermal and electrical properties for multicaloric applications

13Citations
Citations of this article
29Readers
Mendeley users who have this article in their library.

Abstract

Multiferroic materialsare widely used in microelectronics because they are sensitive to elastic, magnetic, and electric fields and there is an intrinsic coupling between them. In particular, transition metal-doped BaTiO3 is consideredas a viable multiferroic because of the simultaneous presence of ferroelectricity and magnetism.In this work, we study the electrical and thermal properties of Mn-doped BaTiO3 ceramics that can be used for multicaloric applications. We found that Mn doping leads to the broadening and shifting of the phase transition accompanied with simultaneous decrease of latent heat and entropy. Mn doping causes a decrease in the bulk resistivity while contact resistance remains intact. Doped ceramics can withstand high electric fields(up to 40 kV/cm) and exhibit linear I-V characteristics followed by the Schottkylimited current in contrast to earlier observations. As such, these ceramics are promising for multicaloric applications.

Cite

CITATION STYLE

APA

Semenov, A., Dedyk, A., Mylnikov, I., Pakhomov, O., Es’kov, A., Anokhin, A., … Kholkin, A. (2019). Mn-Doped BaTiO3Ceramics: Thermal and electrical properties for multicaloric applications. Materials, 12(21). https://doi.org/10.3390/ma12213592

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free