Contribution to the study of fission products release from nuclear fuels in severe accident conditions: effect of the pO 2 on Cs, Mo and Ba speciation

  • Le Gall C
  • Audubert F
  • Léchelle J
  • et al.
N/ACitations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

The objective of this work is to experimentally investigate the effect of the oxygen potential on the fuel and FP chemical behaviour in conditions representative of a severe accident. More specifically, the speciation of Cs, Mo and Ba is investigated. These three highly reactive FP are among the most abundant elements produced through 235 U and 239 Pu thermal fission and may have a significant impact on human health and environmental contamination in case of a light water reactor severe accident. This work has set out to contribute to the following three fields: providing experimental data on Pressurized Water Reactor (PWR) MOX fuel behaviour submitted to severe accident conditions and related FP speciation; going further in the understanding of FP speciation mechanisms at different stages of a severe accident; developing a method to study volatile FP behaviour, involving the investigation of SIMFuel samples manufactured at low temperature through SPS. In this paper, a focus is made on the impact of the oxygen potential towards the interaction between irradiated MOX fuels and the cladding, the interaction between Mo and Ba under oxidizing conditions and the assessment of the oxygen potential during sintering.

Cite

CITATION STYLE

APA

Le Gall, C., Audubert, F., Léchelle, J., Pontillon, Y., & Hazemann, J.-L. (2020). Contribution to the study of fission products release from nuclear fuels in severe accident conditions: effect of the pO 2 on Cs, Mo and Ba speciation. EPJ Nuclear Sciences & Technologies, 6, 2. https://doi.org/10.1051/epjn/2019058

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free