Transferability of monitoring data from neighboring streams in a physical habitat simulation

4Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

Abstract

Habitat simulation models heavily rely on monitoring data, which can have serious effects on the success of a physical habitat simulation. However, if data monitored in a study reach are not available or insufficient, then data from neighboring streams are commonly used. The problem is that the impact of using data from neighboring streams has rarely been studied before. Motivated by this, we report herein on an investigation of the transferability of data from neighboring streams in a physical habitat simulation. The study area is a 2.5 km long reach located downstream from a dam in the Dal River, Korea. Zacco platypus was selected as the target fish for the physical habitat simulation. Monitoring data for the Dal River and three neighboring streams were obtained. First, similarities in the data related to channel geometry and in the observed distribution of the target species were examined. Principal Component Analysis (PCA) was also carried out to see the characteristics of the habitat use of the target species. Habitat Suitability Curves (HSCs) were constructed using the Gene Expression Programming (GEP) model, and improved Generalized Habitat Suitability Curves (GHSCs) were proposed. The physical habitat simulations were then performed. The Composite Suitability Index (CSI) distributions were predicted, and the impact of using data from the neighboring streams was investigated. The results indicated that the use of data from a neighboring stream even in the same watershed can result in large errors in the prediction of CSI. The physical habitat simulation with the improved GHSCs was found to best predict the CSI.

Cite

CITATION STYLE

APA

Choi, B., Choi, S. U., & Kang, H. (2015). Transferability of monitoring data from neighboring streams in a physical habitat simulation. Water (Switzerland), 7(8), 4537–4551. https://doi.org/10.3390/w7084537

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free