Phosphatidylethanolamine is the predominant phospholipid of the mitochondrial inner membrane. In Arabidopsis, pect1-4 mutants exhibit reduced cellular phosphatidylethanolamine levels owing to reduced CTP: phosphorylethanolamine cytidylyltransferase (PECT; EC 2.7.7.14) activity. Consequently, pect1-4 mutants may have decreased mitochondrial phosphatidylethanolamine levels, thereby affecting respiration capacity. Wild-type and pect1-4 plants grew similarly under a short-day condition until 5 weeks, when pect1-4 leaves had slightly less Chl. Total respiration was comparable between wild-type and pect1-4 leaves at 3 weeks and then increased 2-fold in the wild-type but only 1.1-fold in pect1-4 leaves. Compared with the wild type, the Cyt oxidase pathway capacity was reduced by 36% in pect1-4 leaves at 5 weeks and by 43% in pect1-4 mitochondria in 5-week-old rosette leaves. Maximal Cyt c oxidase (COX) activity was 20% lower in pect1-4 mitochondria than in wild-type mitochondria at 5 weeks despite comparable COX II protein levels in mitochondria at that time. Furthermore, COX II protein levels doubled in both wild-type and pect1-4 mitochondria between 3 and 5 weeks. Phosphatidylethanolamine levels were similar between mitochondria from these plants at 3 weeks and then increased by 6.4% in wild-type mitochondria and decreased by 6.5% in pect1-4 mitochondria by 5 weeks. Phosphatidylcholine levels compensated for the decreases in phosphatidylethanolamine levels. COX activity was lower in pect1-4 mitochondria at 5 weeks, most probably due to reduced phosphatidylethanolamine levels and/or an altered phosphatidylethanolamine: phosphatidylcholine ratio. Thus, PECT1 regulates mitochondrial phosphatidylethanolamine levels, which are important for maintaining respiration capacity in Arabidopsis leaves during prolonged growth under short-day conditions. © 2013 The Author.
CITATION STYLE
Otsuru, M., Yu, Y., Mizoi, J., Kawamoto-Fujioka, M., Wang, J., Fujiki, Y., & Nishida, I. (2013). Mitochondrial Phosphatidylethanolamine Level Modulates Cyt c Oxidase Activity to Maintain Respiration Capacity in Arabidopsis thaliana Rosette Leaves. Plant and Cell Physiology, 54(10), 1612–1619. https://doi.org/10.1093/pcp/pct104
Mendeley helps you to discover research relevant for your work.