Primal-dual learning based risk-averse optimal integrated allocation of hybrid energy generation plants under uncertainty

2Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

A groundswell of opinion in utilizing environmentally friendly energy technologies has been put forth worldwide. In this paper, we consider an energy generation plant distribution and allocation problem under uncertainty to get the utmost out of available developments, as well as to control costs and greenhouse emissions. Different clean and traditional energy technologies are considered in this paper. In particular, we present a risk-averse stochastic mixed-integer linear programming (MILP) model to minimize the total expected costs and control the risk of CO2 emissions exceeding a certain budget. We employ the conditional value-at-risk (CVaR) model to represent risk preference and risk constraint of emissions. We prove that our risk-averse model can be equivalent to the traditional risk-neutral model under certain conditions. Moreover, we suggest that the risk-averse model can provide solutions generating less CO2 than traditional models. To handle the computational difficulty in uncertain scenarios, we propose a Lagrange primal-dual learning algorithm to solve the model. We show that the algorithm allows the probability distribution of uncertainty to be unknown, and that desirable approximation can be achieved by utilizing historical data. Finally, an experiment is presented to demonstrate the performance of our method. The risk-averse model encourages the expansion of clean energy plants over traditional models for the reduction CO2 emissions.

Cite

CITATION STYLE

APA

Zhao, X., Xia, X., & Yu, G. (2019). Primal-dual learning based risk-averse optimal integrated allocation of hybrid energy generation plants under uncertainty. Energies, 12(12). https://doi.org/10.3390/en12122275

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free